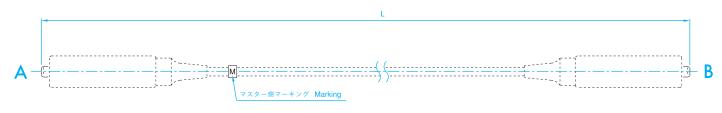


- ・最高品質フェルールの採用により 安定したマスター特性を実現
- ・最適化されたアセンブリ加工技術
- ・高い信頼性

特性

・挿入損失:≦0.1dB(偏芯マスターコード:≦0.5dB)


・反射減衰量:≧ 55dB(PC) ≧ 60dB(APC)

曲率偏心:≦30μm

曲率半径:10mm≤R≤20mm

 $7 m m \le R \le 20 m m (LC)$ $5 m m \le R \le 12 m m (APC)$ ・ファイバ凹み量:±0.05μm

・ファイバコア偏芯量:≦ 0.3 μm、≦ 0.4 μm、≦ 0.5 μm (偏芯マスターコード:1.5 μm~2.5 μm) ※マスター側

単位:ミリメートル

オーダーコード A M C -

種別ファイバ外径A 側コネクタ形状(マスター側)A 側研磨形状0646:マスターコード1:φ2.0mm1:LC(ジャンパー)1:PC0647:反射減衰量測定用マスターコード2:φ3.0mm(SC,FC)2:MU2:APC

 0754: 偏芯マスターコード(調芯用)
 3:SC

 2435: 両端マスターコード
 4:FC

B 側コネクタ形状 (両端マスターコードを選択した場合 B 側もマスターとなります)	B 側研磨形状	全長	コア偏芯量 (偏芯マスターコードを選択時以外は全てに適応)
1:LC(ジャンパー)	1 : PC	10:1.0m	03∶≦0.3μm
2 : MU	2 : APC	15: 1.5m	04∶≦0.4μm
3:SC		20:2.0m	05∶≦0.5μm
4 : FC		25:2.5m	
		30:3.0m	